Get the Books
Enjoying these notebooks and want to support the work? Check out the practical books on Data Science, Visualisation, and Evolutionary Algorithms.
Get the books
Time Domain Analysis
Preamble¶
In [2]:
import mne
Dataset¶
Download sample data from Mike Cohen.
In [3]:
raw = mne.io.read_epochs_eeglab('sampleEEGdata.mat')
values = (raw.get_data().mean(axis=0).squeeze())
Plotting¶
All Channels in Time Domain (Butterfly Plot)¶
In [5]:
evoked = mne.EvokedArray(values, raw.info, tmin=-1)
evoked.plot(spatial_colors=True, time_unit='ms');
Single Channel (P1) in Time Domain¶
In [4]:
evoked = mne.EvokedArray(values, raw.info, tmin=-1)
evoked.pick_channels(['P1'])
evoked.plot(time_unit='ms');
Multiple Channels (FC6, T8, P1) in Time Domain¶
In [8]:
evoked = mne.EvokedArray(values, raw.info, tmin=-1) # Convert it to an EvokedArray
evoked.pick_channels(['FC6', 'T8', 'P1'])
fig = evoked.plot(spatial_colors=True, time_unit='ms');
Support this work
You can support this work by getting the e-books. This notebook will always be available for free in its online format.
Get the Books
Enjoying these notebooks and want to support the work? Check out the practical books on Data Science, Visualisation, and Evolutionary Algorithms.
Get the books