Data is Beautiful
A practical book on data visualisation that shows you how to create static and interactive visualisations that are engaging and beautiful.
Get the book
Interactive Chord Diagrams
Preamble¶
from chord import Chord
Introduction¶
In a chord diagram (or radial network), entities are arranged radially as segments with their relationships visualised by arcs that connect them. The size of the segments illustrates the numerical proportions, whilst the size of the arc illustrates the significance of the relationships1.
Chord diagrams are useful when trying to convey relationships between different entities, and they can be beautiful and eye-catching.
Get Chord Pro¶
Click here to get lifetime access to the full-featured chord visualization API, producing beautiful interactive visualizations, e.g. those featured on the front page of Reddit.
- Produce beautiful interactive Chord diagrams.
- Customize colours and font-sizes.
- Access Divided mode, enabling two sides to your diagram.
- Symmetric and Asymmetric modes,
- Add images and text on hover,
- Access finer-customisations including HTML injection.
- Allows commercial use without open source requirement.
- Currently supports Python, JavaScript, and Rust, with many more to come (accepting requests).
The Chord Package¶
With Python in mind, there are many libraries available for creating Chord diagrams, such as Plotly, Bokeh, and a few that are lesser-known. However, I wanted to use the implementation from d3 because it can be customised to be highly interactive and to look beautiful.
I couldn't find anything that ticked all the boxes, so I made a wrapper around d3-chord myself. It took some time to get it working, but I wanted to hide away everything behind a single constructor and method call. The tricky part was enabling multiple chord diagrams on the same page, and then loading resources in a way that would support Jupyter Notebooks.
You can get the package either from PyPi using pip install chord
or from the GitHub repository. With your processed data, you should be able to plot something beautiful with just a single line, Chord(data, names).show()
. To enable the pro features of the chord
package, get Chord Pro.
The Dataset¶
The focus for this section will be the demonstration of the chord
package. To keep it simple, we will use synthetic data that illustrates the co-occurrences between movie genres within the same movie.
matrix = [
[0, 5, 6, 4, 7, 4],
[5, 0, 5, 4, 6, 5],
[6, 5, 0, 4, 5, 5],
[4, 4, 4, 0, 5, 5],
[7, 6, 5, 5, 0, 4],
[4, 5, 5, 5, 4, 0],
]
names = ["Action", "Adventure", "Comedy", "Drama", "Fantasy", "Thriller"]
Chord Diagrams¶
Let's see what the Chord()
defaults produce when we invoke the show()
method.
Chord(matrix, names).show()
Different Colours¶
The defaults are nice, but what if we want different colours? You can pass in almost anything from d3-scale-chromatic, or you could pass in a list of hexadecimal colour codes.
Chord(matrix, names, colors="d3.schemeSet2").show()
Chord(matrix, names, colors=f"d3.schemeGnBu[{len(names)}]").show()
Chord(matrix, names, colors="d3.schemeSet3").show()
Chord(matrix, names, colors=f"d3.schemePuRd[{len(names)}]").show()
Chord(matrix, names, colors=f"d3.schemeYlGnBu[{len(names)}]").show()
hex_colours = ["#222222", "#333333", "#4c4c4c", "#666666", "#848484", "#9a9a9a"]
Chord(matrix, names, colors=hex_colours).show()
Label Styling¶
We can disable the wrapped labels, and even change the colour.
Chord(matrix, names, wrap_labels=False, label_color="#4c40bf").show()
Opacity¶
We can also change the default opacity of the relationships.
Chord(matrix, names, opacity=0.1).show()
Conclusion¶
In this section, we've introduced the chord diagram and chord
package. We used the package and some synthetic data to demonstrate several chord diagram visualisations with different configurations. The chord Python package is available for free using pip install chord
.
-
Tintarev, N., Rostami, S., & Smyth, B. (2018, April). Knowing the unknown: visualising consumption blind-spots in recommender systems. In Proceedings of the 33rd Annual ACM Symposium on Applied Computing (pp. 1396-1399). ↩
Support this work
You can access this notebook and more by getting the e-book, Data is Beautiful.
Data is Beautiful
A practical book on data visualisation that shows you how to create static and interactive visualisations that are engaging and beautiful.
Get the book