
DR. SHAHIN ROSTAMI

DATA ANALYSIS
WITH

RUST NOTEBOOKS

Biography
Dr. Shahin Rostami is a Senior Academic (Associate Professor) and Principal Consultant

in Data Science, Arti�cial Intelligence, Digital Health, and Defence Systems. He is currently

working with industry whilst on his sabbatical from his position at the Department of

Computing and Informatics at the Bournemouth University, where he has been a faculty

member since 2014.

Dr. Rostami holds a Ph.D. in the �eld of Computational Intelligence with applications to

Concealed Weapon Detection. His research interests lie within Data Science and Arti�cial

Intelligence, ranging from theory to their application to Digital Healthcare and Threat

Detection. Currently, he is consulting for and supervising PhD research projects in Non-

Contact Vital Sign Measurement and Multi-Objective Concealed Weapon Detection. He

has published in many high-impact journals and conferences, and organised/chaired

special sessions including the IEEE CIBCB 2017 "Machine Learning in Medical Diagnosis

and Prognosis". He also leads the Computational Intelligence Research Initiative (CIRI),

and currently supervises 5 Ph.D. and 3 Ms.c. students in related subjects.

Dr. Rostami has founded and held the position of Programme Leader for multiple

programmes at the postgraduate level: MS.c. Data Science and Arti�cial Intelligence

(DSAI); MS.c. Digital Health and Arti�cial Intelligence (DHAI); and MS.c. Applied Data

Analytics (ADA). He has designed and taught both postgraduate and undergraduate

curriculum, such as Search and Optimisation, Arti�cial Intelligence, and Data Mining and

Analytic Technologies. He is also committed to teaching Data Science and Computer

Science to anyone, regardless of their educational background, e.g. his public videos on

YouTube.

shahinrostami.com

YT: ShahinRostami

@ShahinRostami

Github: shahinrostami

u/shahinrostami

Patreon: StamiLabs.com

IG: Data.Crayon

Contents © 2020 Dr. Shahin Rostami

https://datacrayon.com/about/biography/
https://staffprofiles.bournemouth.ac.uk/display/srostami
https://polyra.com/
https://research.bournemouth.ac.uk/project/ciri/
https://datacrayon.com/about/biography/supervisions
https://www.bournemouth.ac.uk/study/courses/msc-data-science-artificial-intelligence
https://www.bournemouth.ac.uk/study/courses/msc-digital-health-artificial-intelligence
https://www1.bournemouth.ac.uk/study/courses/msc-applied-data-analytics
https://www.youtube.com/watch?v=L--IxUH4fac
https://shahinrostami.com/
https://www.youtube.com/shahinrostami
https://twitter.com/shahinrostami
https://github.com/shahinrostami/
https://reddit.com/u/shahinrostami
https://stamilabs.com/
https://www.instagram.com/p/CBYeu6mHF0s/
https://datacrayon.com/about/biography/

. .1

. .4

. .10

. .18

. .25

version 2021.2.10

Table of Contents
Preface

Setup Anaconda, Jupyter, and Rust

Multidimensional Arrays and Operations with NDArray

Visualisation of Co-occurring Types

Box Plots at the Olympics

Preface

Page 1

Preface

Preface

The Rust programming language has become a popular choice amongst software

engineers since its release in 2010. Besides being something new and interesting, Rust

promised to offer exceptional performance and reliability. In particular, Rust achieves

memory-safety and thread-safety through its ownership model. Instead of runtime

checks, this safety is assured at compile time by Rust's borrow checker. This prevents

unde�ned behaviour such as dangling pointers!

println!("Hello World!");

Hello World!

I �rst encountered Rust sometime around 2015 when I was updating my teaching

materials on memory management in C. A year later in 2016, I implemented a simple

multi-objective evolutionary algorithm in Rust as an academic exercise (available:

https://github.com/shahinrostami/simple_ea). I didn't have any formal training with Rust,

nor did I complete any tutorial series, I just �gured things out using the documentation as I

progressed through my project.

Some example code from this project takes ZDT1 from its mathematical expression in

Equation 1

to the Rust implementation below.

f (x)1 1

f (x)2

g(x ,… ,x)2 D

h(f , g)1

= x1

= g ⋅ h

= 1 + 9 ⋅
d=2

∑
D

(D − 1)
xd

= 1 − f1/g

(1)

https://datacrayon.com/posts/programming/rust-notebooks/preface/
https://github.com/shahinrostami/simple_ea

Preface

Page 2

pub fn zdt1(parameters: [f32; 30]) -> [f32; 2] {

 let f1 = parameters[0];
 let mut g = 1_f32;

 for i in 1..parameters.len() {
 g = g + ((9_f32 / (parameters.len() as f32 - 1_f32)) *
parameters[i]);
 }

 let h = 1_f32 - (f1 / g).sqrt();
 let f2 = g * h;

 return [f1, f2];
}

It was interesting to see that since writing this code in 2016, some of my dependencies

have been deprecated and replaced.

My greatest challenge was breaking away from what I already knew. Until this point, I

was familiar with languages such as C, C++, C#, Java, Python, MATLAB, etc., with the

majority of my time spent working with memory managed languages. I found myself

resisting Rust's intended usage, and it is still something I'm working on.

Now that I am about to commence my sabbatical from my University post, I've decided to

try Rust again. This time, I'm going to write a book which focusses on using Rust and

Jupyter Notebooks to implement algorithms and conduct experiments, most likely in the

�elds of search, optimisation, and machine learning. Can we write and execute all our

code in a Jupyter Notebook? Yes! Should we? Probably not. However, I enjoy the work�ow,

and making this an enjoyable process is important to me.

Dr. Shahin Rostami
@ShahinRostami

Looking through the November commits for Evcxr
and incredibly flattered to see my book mentioned!

Note

I aim to generate everything in this book through code. This means you will

see the code for all my �gures and tables, including things like �owcharts.

This book is currently available in early access form. It is being actively

worked on and updated.

Every section is intended to be independent, so you will �nd some repetition

as you progress from one section to another.

https://twitter.com/ShahinRostami?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1336021174149656579%7Ctwgr%5E%7Ctwcon%5Es1_&ref_url=https%3A%2F%2Fdatacrayon.com%2Fposts%2Fprogramming%2Frust-notebooks%2Fpreface%2F
https://twitter.com/ShahinRostami?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1336021174149656579%7Ctwgr%5E%7Ctwcon%5Es1_&ref_url=https%3A%2F%2Fdatacrayon.com%2Fposts%2Fprogramming%2Frust-notebooks%2Fpreface%2F
https://twitter.com/ShahinRostami/status/1336021174149656579?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1336021174149656579%7Ctwgr%5E%7Ctwcon%5Es1_&ref_url=https%3A%2F%2Fdatacrayon.com%2Fposts%2Fprogramming%2Frust-notebooks%2Fpreface%2F

Preface

Page 3

github.com/google/evcxr/c… #rustlang #rust

6�54 PM · Dec 7, 2020

7 1 Copy link to Tweet

https://t.co/KtAWzvRfEk?amp=1
https://twitter.com/hashtag/rustlang?src=hashtag_click
https://twitter.com/hashtag/rust?src=hashtag_click
https://twitter.com/ShahinRostami/status/1336021174149656579/photo/1?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1336021174149656579%7Ctwgr%5E%7Ctwcon%5Es1_&ref_url=https%3A%2F%2Fdatacrayon.com%2Fposts%2Fprogramming%2Frust-notebooks%2Fpreface%2F
https://twitter.com/ShahinRostami/status/1336021174149656579?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1336021174149656579%7Ctwgr%5E%7Ctwcon%5Es1_&ref_url=https%3A%2F%2Fdatacrayon.com%2Fposts%2Fprogramming%2Frust-notebooks%2Fpreface%2F
https://help.twitter.com/en/twitter-for-websites-ads-info-and-privacy
https://twitter.com/intent/like?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1336021174149656579%7Ctwgr%5E%7Ctwcon%5Es1_&ref_url=https%3A%2F%2Fdatacrayon.com%2Fposts%2Fprogramming%2Frust-notebooks%2Fpreface%2F&tweet_id=1336021174149656579
https://twitter.com/ShahinRostami?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1336021174149656579%7Ctwgr%5E%7Ctwcon%5Es1_&ref_url=https%3A%2F%2Fdatacrayon.com%2Fposts%2Fprogramming%2Frust-notebooks%2Fpreface%2F

Setup Anaconda, Jupyter, and Rust

Page 4

Setup Anaconda, Jupyter, and Rust

Software Setup

We are taking a practical approach in the following sections. As such, we need the right

tools and environments available in order to keep up with the examples and exercises. We

will be using Rust along with packages that will form our scienti�c stack, such as

ndarray (for multi-dimensional containers) and plotly (for interactive graphing), etc.

We will write all of our code within a Jupyter Notebook, but you are free to use other IDEs.

Download SourceContents

Software Setup

Install Miniconda

Create Your Environment

Install Packages

Install Jupyer Lab Extensions

Install Rust

Install the EvCxR Jupyter Kernel

A Quick Test

Conclusion

https://datacrayon.com/posts/programming/rust-notebooks/setup-anaconda-jupyter-and-rust/
https://www.rust-lang.org/
https://jupyter.org/
https://datacrayon.com/posts/programming/rust-notebooks/setup-anaconda-jupyter-and-rust/index.ipynb

Setup Anaconda, Jupyter, and Rust

Page 5

Figure 1 - A Jupyter Notebook being edited within Jupyter Lab.

Theme from https://github.com/shahinrostami/theme-purple-please

Install Miniconda

There are many different ways to get up and running with an environment that will

facilitate our work. One approach I can recommend is to install and use Miniconda.

Miniconda is a free minimal installer for conda. It is a small, bootstrap

version of Anaconda that includes only conda, Python, the packages

they depend on, and a small number of other useful packages, including

pip, zlib and a few others.

— https://docs.conda.io/en/latest/miniconda.html

You can skip Miniconda entirely if you prefer and install Jupyter Lab directly, however, I

prefer using it to manage other environments too.

You can �nd installation instructions for Miniconda on their website, but if you're using

Linux (e.g. Ubuntu) you can execute the following commands from in your terminal:

wget https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh
chmod +x Miniconda3-latest-Linux-x86_64.sh
./Miniconda3-latest-Linux-x86_64.sh

This will download the installation �les and start the interactive installation process.

Follow the process to the end, where you should see the following message:

Thank you for installing Miniconda3!

All that's left is to close and re-open the terminal window.

Create Your Environment

Once Miniconda is installed, we need to create and con�gure our environment. If you

added Miniconda to your PATH environment during the installation process, then you can

run these commands directly from Terminal, Powershell, or CMD.

Now we can create and con�gure our conda environment using the following commands.

conda create -n darn python=3

You can replace darn (Data Analytics with Rust Notebooks) with a name of your

choosing.

This will create a conda environment named darn with the latest Python 3 package

ready to go. You should be presented with a list of packages that will be installed and

asked if you wish to proceed. To do so, just enter the character y . If this operation is

successful, you should see the following output at the end:

https://github.com/shahinrostami/theme-purple-please
https://docs.conda.io/en/latest/miniconda.html

Setup Anaconda, Jupyter, and Rust

Page 6

Preparing transaction: done
Verifying transaction: done
Executing transaction: done
#
To activate this environment, use
#
$ conda activate darn
#
To deactivate an active environment, use
#
$ conda deactivate

As the message suggests, you will need to type the following command to activate and

start entering commands within our environment named darn .

conda activate darn

Once you do that, you should see your terminal prompt now leads with the environment

name within parentheses:

(darn) melica:~ shahin$

This will allow you to identify which environment you are currently operating in. If you

restart your machine, you should be able to use conda activate darn within your

conda prompt to get back into the same environment.

Install Packages

If your environment was already con�gured and ready, you would be able to enter the

command jupyter lab to launch an instance of the Jupyter Lab IDE in the current

directory. However, if we try that in our newly created environment, we will receive an

error:

Note

The example above shows the macOS machine name "melica" and the user

"shahin". You will see something different on your machine, and it may

appear in a different format on a different operating system such as

Windows. As long as the prompt leads with "(darn)", you are on the right

track.

Setup Anaconda, Jupyter, and Rust

Page 7

(darn) melica:~ shahin$ jupyter lab
-bash: jupyter: command not found

So let's �x that. Let's install Jupyter Lab and use the -y option which automatically says

"yes" to any questions asked during the installation process.

conda install -c conda-forge jupyterlab=2.2.9

We'll also need cmake later on.

conda install -c anaconda cmake -y

Finally, let's install nodejs. This is needed to run our Jupyter Lab extension in the next

section.

conda install -c conda-forge nodejs=15 -y

Install Jupyer Lab Extensions

There's one last thing we need to do before we move on, and that's installing any Jupyter

Lab extensions that we may need. One particular extension that we need is the plotly

extension, which will allow our Jupyter Notebooks to render our Plotly visualisations.

Within your conda environment, simply run the following command:

jupyter labextension install jupyterlab-plotly

This may take some time, especially when it builds your jupyterlab assets, so keep an eye

on it until you're returned control over the conda prompt, i.e. when you see the following:

(darn) melica:~ shahin$

Optionally, you may wish to install the purple looking theme from Figure 1 above.

jupyter labextension install @shahinrostami/theme-purple-please

Now we're good to go!

Install Rust

Now we'll install Rust using rustup, but you can check out the other installation methods if

you need them.

curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh

https://forge.rust-lang.org/infra/other-installation-methods.html

Setup Anaconda, Jupyter, and Rust

Page 8

The code samples in this book will work in many versions of Rust, but I can con�rm them

to be working with version 1.42.0 . You can get the same version with:

rustup default 1.42.0

You will be given instructions for adding Cargo's bin directory to your PATH environment

variable.

source $HOME/.cargo/env

This will work until your close your terminal, so make sure to add it to your shell pro�le. I

use Z shell (Zsh) so this meant adding the following to .zshrc :

export PATH="$HOME/.cargo/bin:$PATH"

You can make sure everything works by closing and re-opening your terminal and typing

cargo . If this returns the usage documentation then you're all set.

Install the EvCxR Jupyter Kernel

Now we'll install the EvCxR Jupyter Kernel. If you're wondering how it's pronounced, it's

been mentioned to be "Evic-ser". This is what will allow us to execute Rust code in a

Jupyter Notebook.

You can get other installation methods methods for EvCxR if you need then, but we will be

using:

cargo install evcxr_jupyter --version 0.5.3
evcxr_jupyter --install

A Quick Test

Let's test if everything is working as it should be. In your conda prompt, within your conda

environment, run the following command

jupyter lab

Note

Don't forget to activate your environment when opening the terminal.

https://github.com/google/evcxr/blob/master/evcxr_jupyter/README.md
https://www.reddit.com/r/rust/comments/9irjm7/evcxr_a_repl_and_jupyter_kernel_for_rust/e6mphus?utm_source=share&utm_medium=web2x
https://github.com/google/evcxr/blob/master/evcxr_jupyter/README.md

Setup Anaconda, Jupyter, and Rust

Page 9

This should start the Jupyter Lab server and launch a browser window with the IDE ready

to use.

Figure 2 - A fresh installation of Jupyter Lab.

Let's create a new notebook. In the Launcher tab which has opened by default, click

"Rust" under the Notebook heading. This will create a new and empty notebook named

Untitled.ipynb in the current directory.

If everything is con�gured as it should be, you should see no errors. Type the following

into the �rst cell and click the "play" button to execute it and create a new cell.

println!("Hello World!");

Hello World!

If we followed all the instructions and didn't encounter any errors, everything should be

working. We should see "Hello World!" in the output cell.

Conclusion

In this section, we've downloaded, installed, con�gured, and tested our environment such

that we're ready to run the following examples and experiments. If you ever �nd that

you're missing Jupyter Lab packages, you can install them in the same way as we

installed Jupyter Lab and the others in this section.

Multidimensional Arrays and Operations with NDArray

Page 10

Multidimensional Arrays and Operations with
NDArray

Preamble

:dep ndarray = {version = "0.13.1"}
extern crate ndarray;

This module contains the most used types, type aliases, traits and functions that you can

import easily as a group:

use ndarray::prelude::*;

This gives us access to the following: ArrayBase , Array , RcArray , ArrayView ,

ArrayViewMut , Axis , Dim , Dim , Dimension , Array0 , Array1 , Array2 , Array3 ,

Array4 , Array5 , Array6 , ArrayD , ArrayView0 , ArrayView1 , ArrayView2 ,

ArrayView3 , ArrayView4 , ArrayView5 , ArrayView6 , ArrayViewD , ArrayViewMut0 ,

ArrayViewMut1 , ArrayViewMut2 , ArrayViewMut3 , ArrayViewMut4 , ArrayViewMut5 ,

ArrayViewMut6 , ArrayViewMutD , Ix0 , Ix0 , Ix1 , Ix1 , Ix2 , Ix2 , Ix3 , Ix3 ,

Ix4 , Ix4 , Ix5 , Ix5 , Ix6 , Ix6 , IxDyn , IxDyn , arr0 , arr1 , arr2 , aview0 ,

aview1 , aview2 , aview_mut1 , ShapeBuilder , NdFloat , and AsArray .

Download SourceContents

Preamble

Introduction

Creating Arrays

From a Vector

Filled with Zeros

Filled with Ones

Dimensions

From Length

From Shape

Indexing

Mathematics

Summing Array Elements

Element-wise Operations

Conclusion

https://datacrayon.com/posts/programming/rust-notebooks/multidimensional-arrays-and-operations-with-ndarray/
https://datacrayon.com/posts/programming/rust-notebooks/multidimensional-arrays-and-operations-with-ndarray/index.ipynb

Multidimensional Arrays and Operations with NDArray

Page 11

Introduction

The ndarray crate provides us with a multidimensional container that can contain

general or numerical elements. If you're familiar with Python, then you can consider it to

be similar to the numpy package. With ndarray we get our -dimensional arrays,

slicing, views, mathematical operations, and more. We'll need these in later sections to

load in our datasets into containers that we can operate on and conduct our analyses.

Creating Arrays

From a Vector

Let's take a look at how we can create a two-dimensional ndarray Array from a Vec
with the arr2() function.

arr2(&[[1.,2.,3.],
 [4.,5.,6.]])

[[1.0, 2.0, 3.0],
 [4.0, 5.0, 6.0]], shape=[2, 3], strides=[3, 1], layout=C (0x1), const ndim=2

It's as easy as that, This has given us a 2 by 3 array with our desired �oating point values.

We can also use the array! macro as a shorthand for creating an array.

array![[1.,2.,3.],
 [4.,5.,6.]]

[[1.0, 2.0, 3.0],
 [4.0, 5.0, 6.0]], shape=[2, 3], strides=[3, 1], layout=C (0x1), const ndim=2

Filled with Zeros

We can also construct an array �lled with zeros, we can do this with the zeros()
function and pass in our desired shape.

Array2::<f64>::zeros((4,4))

[[0.0, 0.0, 0.0, 0.0],
 [0.0, 0.0, 0.0, 0.0],
 [0.0, 0.0, 0.0, 0.0],
 [0.0, 0.0, 0.0, 0.0]], shape=[4, 4], strides=[4, 1], layout=C (0x1), const
ndim=2

Filled with Ones

Similarly, we can also construct an array �lled with ones, we can do this with the ones()
function and pass in our desired shape.

n

Multidimensional Arrays and Operations with NDArray

Page 12

Array2::<f64>::ones((4,4))

[[1.0, 1.0, 1.0, 1.0],
 [1.0, 1.0, 1.0, 1.0],
 [1.0, 1.0, 1.0, 1.0],
 [1.0, 1.0, 1.0, 1.0]], shape=[4, 4], strides=[4, 1], layout=C (0x1), const
ndim=2

Let's create variables to store a 1D array and a 2D array for use in the following

subsections.

let data_1D: Array1::<f32> = array![1.,2.,3.];

let data_2D: Array2::<f32> = array![[1.,2.,3.],
 [4.,5.,6.]];

Dimensions

It's often the case that we need to �nd out the dimensionality of our arrays. There are

many ways to do this, and the following contains some of the common approaches.

From Length

We can use Array.len() to return the shape along a single axis.

data_1D.len()

3

This is simple enough if we have a one-dimensional array. However, for higher

dimensions, we can see that for a len() returns the �attened length.

data_2D.len()

6

If we want to get the length along one of the axes instead, e.g. the second one, we can

use Array.len_of(Axis(n))

data_2D.len_of(Axis(1))

3

From Shape

Another approach is to use Array.shape() which returns more information.

Multidimensional Arrays and Operations with NDArray

Page 13

data_2D.shape()

[2, 3]

We can see it has returned an array that indicates the length along all of our axes. This

can be indexed to get the length along a speci�c axis.

data_2D.shape()[1]

3

Indexing

Like most data structures, the indexing starts at . To access the �rst element in our one-

dimensional arrays we can do the following.

data_1D[0]

1.0

For higher dimensions, we need to use a primitive array.

data_2D[[0,0]]

1.0

Likewise, to access the second element in our one-dimensional arrays we need to index

with .

data_1D[1]

2.0

Again, for our higher dimensions, we use a primitive array..

data_2D[[0,1]]

2.0

To select the last element in our one-dimensional arrays we can index with Array.len()
-1 .

0

1

Multidimensional Arrays and Operations with NDArray

Page 14

data_1D[data_1D.len() -1]

3.0

But for our multidimensional arrays we need to use a primitive array and use

Array.len_of(Axis(n)) .

data_2D[[0, data_2D.len_of(Axis(1)) -1]]

3.0

Alternatively, we could use Array.shape()[n] .

data_2D[[0, data_2D.shape()[1] - 1]]

3.0

Mathematics

Let's look at some common mathematical operations that can operate on our arrays.

Summing Array Elements

All elements in an array can be summed with sum() .

data_2D.sum()

21.0

We may instead wish to sum all elements along a speci�c axis in an array, e.g. the �rst

axis.

data_2D.sum_axis(Axis(0))

[5.0, 7.0, 9.0], shape=[3], strides=[1], layout=CF (0x3), const ndim=1

Or the second axis:

data_2D.sum_axis(Axis(1))

[6.0, 15.0], shape=[2], strides=[1], layout=CF (0x3), const ndim=1

Element-wise Operations

Multidimensional Arrays and Operations with NDArray

Page 15

It's quite common to apply mathematical operations to each element of an array. Let's

have a look at some examples.

Addition

We can add values, e.g. , to every element.

&data_2D + 1.0

[[2.0, 3.0, 4.0],
 [5.0, 6.0, 7.0]], shape=[2, 3], strides=[3, 1], layout=C (0x1), const ndim=2

We can also add the elements of one array to another.

&data_2D + &data_2D

[[2.0, 4.0, 6.0],
 [8.0, 10.0, 12.0]], shape=[2, 3], strides=[3, 1], layout=C (0x1), const ndim=2

Finally, we can add a one-dimensional array to a two-dimensional array.

&data_2D + &data_1D

[[2.0, 4.0, 6.0],
 [5.0, 7.0, 9.0]], shape=[2, 3], strides=[3, 1], layout=C (0x1), const ndim=2

Subtraction

We can subtract values, e.g. , from every element.

&data_2D - 1.0

[[0.0, 1.0, 2.0],
 [3.0, 4.0, 5.0]], shape=[2, 3], strides=[3, 1], layout=C (0x1), const ndim=2

We can also subtract elements of one array from another.

1.0

Warning

When summing two arrays together they don't need to have the same

shape, but their shapes must be compatible. This means we should be able

to broadcast one array across another, i.e. they must be identical in the size

of at least one dimension.

1.0

Multidimensional Arrays and Operations with NDArray

Page 16

&data_2D - &data_2D

[[0.0, 0.0, 0.0],
 [0.0, 0.0, 0.0]], shape=[2, 3], strides=[3, 1], layout=C (0x1), const ndim=2

Finally, we can subtract a one-dimensional array from a two-dimensional array array.

&data_2D - &data_1D

[[0.0, 0.0, 0.0],
 [3.0, 3.0, 3.0]], shape=[2, 3], strides=[3, 1], layout=C (0x1), const ndim=2

Multiplication

We can multiply every element by a value, e.g. by .

&data_2D * 2.0

[[2.0, 4.0, 6.0],
 [8.0, 10.0, 12.0]], shape=[2, 3], strides=[3, 1], layout=C (0x1), const ndim=2

We can also multiply every element of one array by another.

&data_2D * &data_1D

[[1.0, 4.0, 9.0],
 [4.0, 10.0, 18.0]], shape=[2, 3], strides=[3, 1], layout=C (0x1), const ndim=2

Division

We can divide every element by a value, e.g. by .

&data_2D / 2.0

[[0.5, 1.0, 1.5],
 [2.0, 2.5, 3.0]], shape=[2, 3], strides=[3, 1], layout=C (0x1), const ndim=2

We can also divide every element of one array by another.

&data_2D / &data_1D

[[1.0, 1.0, 1.0],
 [4.0, 2.5, 2.0]], shape=[2, 3], strides=[3, 1], layout=C (0x1), const ndim=2

Power

2.0

2.0

Multidimensional Arrays and Operations with NDArray

Page 17

We can raise the elements in an array to a power, e.g. of .

data_2D.mapv(|data_2D| data_2D.powi(3))

[[1.0, 8.0, 27.0],
 [64.0, 125.0, 216.0]], shape=[2, 3], strides=[3, 1], layout=C (0x1), const
ndim=2

Square root

We can calculate the square root of elements in an array. The speci�ed data type must

match.

data_2D.mapv(f32::sqrt)

[[1.0, 1.4142135, 1.7320508],
 [2.0, 2.236068, 2.4494898]], shape=[2, 3], strides=[3, 1], layout=C (0x1),
const ndim=2

Conclusion

In this section, we've introduced ndarray as a crate that gives us multidimensional

containers and operations. We demonstrated how to create arrays, �nd out their

dimensionality, index them, and how to invoke some basic mathematical operations.

3.0

Visualisation of Co-occurring Types

Page 18

Visualisation of Co-occurring Types

Preamble

:dep darn = {version = "0.3.0"}
:dep ndarray = {version = "0.13.1"}
:dep itertools = {version = "0.9.0"}
:dep chord = {Version = "0.1.6"}
extern crate ndarray;

use ndarray::prelude::*;
use itertools::Itertools;
use chord::{Chord, Plot};

Introduction

In this section, we're going to use the Complete Pokemon Dataset dataset to visualise the

co-occurrence of Pokémon types from generations one to eight. We'll make this happen

using a chord diagram.

Chord Diagrams

In a chord diagram (or radial network), entities are arranged radially as segments with

their relationships visualised by arcs that connect them. The size of the segments

illustrates the numerical proportions, whilst the size of the arc illustrates the signi�cance

of the relationships .

Chord diagrams can be useful when trying to convey relationships between different

entities, and they can be beautiful and eye-catching. They can get messy when

considering many entities, so it's often bene�cial to make them interactive and explorable.

Download SourceContents

Preamble

Introduction

Chord Diagrams

The Chord Crate

The Dataset

Data Wrangling

Chord Diagram

Conclusion

1

https://datacrayon.com/posts/programming/rust-notebooks/visualisation-of-co-occurring-types/
https://www.kaggle.com/mariotormo/complete-pokemon-dataset-updated-090420
https://datacrayon.com/posts/programming/rust-notebooks/visualisation-of-co-occurring-types/index.ipynb

Visualisation of Co-occurring Types

Page 19

The Chord Crate

I wasn't able to �nd any Rust crates for plotting chord diagrams, so I ported my own

(based on d3-chord) from Python to Rust.

You can get the crate either from crates.io or from the GitHub repository. With your

processed data, you should be able to plot something beautiful with just a single line,

Chord{ matrix : matrix, names : names, .. Chord::default() }.show() . To

enable the pro features of the chord crate check out Chord Pro.

The Dataset

The dataset documentation states that we can expect two type variables per each of the

1028 samples of the �rst eight generations, type_1 , and type_2 .

Let's download the mirrored dataset and have a look for ourselves.

let data =
darn::read_csv("https://datacrayon.com/datasets/pokemon_gen_1_to_8.csv");

darn::show_frame(&data.0, Some(&data.1));

pokedex_number name german_name japanese_name generation status

"0" "1" "Bulbasaur" "Bisasam"
"フシギダネ

(Fushigidane)"
"1" "Normal"

"1" "2" "Ivysaur" "Bisaknosp"
"フシギソウ

(Fushigisou)"
"1" "Normal"

"2" "3" "Venusaur" "Bisa�or"
"フシギバナ

(Fushigibana)"
"1" "Normal"

"3" "3"
"Mega

Venusaur"
"Bisa�or"

"フシギバナ

(Fushigibana)"
"1" "Normal"

"4" "4" "Charmander" "Glumanda" "ヒトカゲ "1" "Normal"

https://datacrayon.com/shop/product/chord-pro/
https://pypi.org/project/chord/
https://github.com/d3/d3-chord
https://crates.io/crates/chord
https://github.com/shahinrostami/chord_rs
https://store.shahinrostami.com/product/chord-pro/

Visualisation of Co-occurring Types

Page 20

It looks good so far, we can clearly see the two type columns. Let's con�rm that we have

1028 samples.

&data.0.shape()

[1028, 51]

Perfect, that's exactly what we were expecting.

Data Wrangling

We need to do a bit of data wrangling before we can visualise our data. We can see from

the column names that the Pokémon types are split between the columns type_1 and

type_2 .

&data.1

["", "pokedex_number", "name", "german_name", "japanese_name", "generation",
"status", "species", "type_number", "type_1", "type_2", "height_m",
"weight_kg", "abilities_number", "ability_1", "ability_2", "ability_hidden",
"total_points", "hp", "attack", "defense", "sp_attack", "sp_defense", "speed",
"catch_rate", "base_friendship", "base_experience", "growth_rate",
"egg_type_number", "egg_type_1", "egg_type_2", "percentage_male", "egg_cycles",
"against_normal", "against_fire", "against_water", "against_electric",
"against_grass", "against_ice", "against_fight", "against_poison",
"against_ground", "against_flying", "against_psychic", "against_bug",
"against_rock", "against_ghost", "against_dragon", "against_dark",
"against_steel", "against_fairy"]

So let's select just these two columns and work with a list containing only them as we

move forward.

(Hitokage)"

...

"1023" "888"

"Zacian Hero

of Many

Battles"

"" "" "8" "Legendary"

"1024" "889"

"Zamazenta

Crowned

Shield"

"" "" "8" "Legendary"

"1025" "889"

"Zamazenta

Hero of Many

Battles"

"" "" "8" "Legendary"

"1026" "890" "Eternatus" "" "" "8" "Legendary"

"1027" "890"
"Eternatus

Eternamax"
"" "" "8" "Legendary"

Visualisation of Co-occurring Types

Page 21

let types = data.0.slice(s![.., 9..11]).into_owned();
darn::show_frame(&types, None);

"Grass" "Poison"

"Grass" "Poison"

"Grass" "Poison"

"Grass" "Poison"

"Fire" ""

... ...

"Fairy" ""

"Fighting" "Steel"

"Fighting" ""

"Poison" "Dragon"

"Poison" "Dragon"

Our chord diagram will need two inputs: the co-occurrence matrix, and a list of names to

label the segments.

First, we'll populate our list of type names by looking for the unique ones.

let mut names = types.iter().cloned().unique().collect_vec();
names

["Grass", "Poison", "Fire", "", "Flying", "Dragon", "Water", "Bug", "Normal",
"Dark", "Electric", "Psychic", "Ground", "Ice", "Steel", "Fairy", "Fighting",
"Rock", "Ghost"]

Let's sort this alphabetically.

names.sort();
names

["", "Bug", "Dark", "Dragon", "Electric", "Fairy", "Fighting", "Fire",
"Flying", "Ghost", "Grass", "Ground", "Ice", "Normal", "Poison", "Psychic",
"Rock", "Steel", "Water"]

We'll also remove the empty string that has appeared as a result of samples with only

one type.

names.remove(0);
names

Visualisation of Co-occurring Types

Page 22

["Bug", "Dark", "Dragon", "Electric", "Fairy", "Fighting", "Fire", "Flying",
"Ghost", "Grass", "Ground", "Ice", "Normal", "Poison", "Psychic", "Rock",
"Steel", "Water"]

Now we can create our empty co-occurrence matrix with a shape that can hold co-

occurrences between our types.

let type_count = names.len();
let mut matrix: Vec<Vec<f64>> = vec![vec![Default::default(); type_count];
type_count];
matrix

[[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]]

We can populate a co-occurrence matrix with the following approach. Here, we're looping

through every sample in our dataset and incrementing the corresponding matrix entry by

one using the type_1 and type_2 indices from the names vector. To make sure we

have a co-occurrence matrix, we're also doing the same in reverse, i.e. type_2 and

type_1 .

for item in types.genrows() {
 if(!item[0].is_empty() && !item[1].is_empty()) {
 matrix[names.iter().position(|s| s == &item[1]).unwrap()]
 [names.iter().position(|s| s == &item[0]).unwrap()] += 1.0;
 matrix[names.iter().position(|s| s == &item[0]).unwrap()]
 [names.iter().position(|s| s == &item[1]).unwrap()] += 1.0;
 };
};

Visualisation of Co-occurring Types

Page 23

Chord Diagram

Time to visualise the co-occurrence of types using a chord diagram. We are going to use a

list of custom colours that represent the types.

let colors: Vec<String> = vec![
 "#A6B91A", "#705746", "#6F35FC", "#F7D02C", "#D685AD",
 "#C22E28", "#EE8130", "#A98FF3", "#735797", "#7AC74C",
 "#E2BF65", "#96D9D6", "#A8A77A", "#A33EA1", "#F95587",
 "#B6A136", "#B7B7CE", "#6390F0"
]
.into_iter()
.map(String::from)
.collect();

Finally, we can put it all together.

Chord {
 matrix: matrix.clone(),
 names: names.clone(),
 colors: colors,
 margin: 30.0,
 wrap_labels: true,
 ..Chord::default()
}
.show();

Visualisation of Co-occurring Types

Page 24

Bug

Dark

D
ragon

Electric
F
airy

F
ig
h
ti
n
g

F
ir
e

Fl
yi
ng

Ghos
t

Grass

Ground

Ice

N
orm

al

P
o
iso

n

P
sy
ch
ic

R
oc
k

St
ee
l

Water

Conclusion

In this section, we demonstrated how to conduct some data wrangling on a downloaded

dataset to prepare it for a chord diagram. Our chord diagram is interactive, so you can use

your mouse or touchscreen to investigate the co-occurrences!

Box Plots at the Olympics

Page 25

Box Plots at the Olympics

Preamble

:dep darn = {version = "0.3.0"}
:dep ndarray = {version = "0.13.1"}
:dep itertools = {version = "0.9.0"}
:dep plotly = {version = "0.4.0"}
extern crate ndarray;

use ndarray::prelude::*;
use std::str::FromStr;
use itertools::Itertools;
use plotly::{Plot, Layout, BoxPlot};
use plotly::common::{Title, Font};
use plotly::layout::{Margin, Axis};

Introduction

In this section, we're going to use 120 years of Olympic history to create two

visualisations. Let's set our sights on something that illustrates the age and height in

athletes grouped by the different Olympic games.

Download SourceContents

Preamble

Introduction

The Dataset

Data Wrangling

Visualising the Data

Height of Athletes in Basketball

Athlete Height Grouped by Olympic Games

Athlete Age Grouped by Olympic Games

Conclusion

https://datacrayon.com/posts/programming/rust-notebooks/box-plots-at-the-olympics/
https://datacrayon.com/posts/programming/rust-notebooks/box-plots-at-the-olympics/index.ipynb

Box Plots at the Olympics

Page 26

The Dataset

We'll use the 120 years of Olympic history: athletes and results dataset, which we'll

download and load with the darn crate. You're also welcome to use the mirrored that

has been used in the following cell.

let data =
darn::read_csv("https://datacrayon.com/datasets/athlete_events_known_age.csv"
);

We'll take a peek at what we've downloaded to make sure there were no issues with the

loading.

darn::show_frame(&data.0, Some(&data.1));

ID Name Sex Age Height Weight Team NOC Games Year Seaso

"1"
"A

Dijiang"
"M" "24" "180" "80" "China" "CHN"

"1992

Summer"
"1992" "Summe

"2"
"A

Lamusi"
"M" "23" "170" "60" "China" "CHN"

"2012

Summer"
"2012" "Summe

"5"

"Christine

Jacoba

Aaftink"

"F" "21" "185" "82" "Netherlands" "NED"
"1988

Winter"
"1988" "Winte

"5"

"Christine

Jacoba

Aaftink"

"F" "21" "185" "82" "Netherlands" "NED"
"1988

Winter"
"1988" "Winte

"5"

"Christine

Jacoba

Aaftink"

"F" "25" "185" "82" "Netherlands" "NED"
"1992

Winter"
"1992" "Winte

...

"135569"
"Andrzej

ya"
"M" "29" "179" "89" "Poland-1" "POL"

"1976

Winter"
"1976" "Winte

"135570" "Piotr ya" "M" "27" "176" "59" "Poland" "POL"
"2014

Winter"
"2014" "Winte

"135570" "Piotr ya" "M" "27" "176" "59" "Poland" "POL"
"2014

Winter"
"2014" "Winte

"135571"

"Tomasz

Ireneusz

ya"

"M" "30" "185" "96" "Poland" "POL"
"1998

Winter"
"1998" "Winte

"135571" "Tomasz "M" "34" "185" "96" "Poland" "POL" "2002 "2002" "Winte

https://www.kaggle.com/heesoo37/120-years-of-olympic-history-athletes-and-results

Box Plots at the Olympics

Page 27

It looks like the data was loaded without any issues.

Data Wrangling

Let's assign the feature data to games and feature names to headers for readability.

let games = data.0;
let headers = data.1;

A quick look at the available features will give us the feature names we're after for the

age and height of athletes.

println!("{}", &headers.iter().format("\n"));

ID
Name
Sex
Age
Height
Weight
Team
NOC
Games
Year
Season

We've con�rmed that the two features we're after are named Age and Height , and

that they're at index and . However, it would be better to determine these indices

programmatically instead of hard-coding them.

let idx_age = headers.iter().position(|x| x == "Age").unwrap();
let idx_height = headers.iter().position(|x| x == "Height").unwrap();

City
Sport
Event
Medal

Let's create an array of these indices and print them out to check.

let selected_features = [idx_age,idx_height];

println!("{}",selected_features.iter().format("\n"));

Ireneusz

ya"

Winter"

3 4

Box Plots at the Olympics

Page 28

3
4

Now that we know the index of our age and height columns, let's prepare two collection

variables, one named features to hold the numeric feature data, and one named

feature_headers to hold the corresponding column names.

let mut features: Array2::<f32> = Array2::<f32>::zeros((games.shape()
[0],0));
let mut feature_headers = Vec::<String>::new();

Now, we can copy and parse our feature data into initialised collections.

for &feature_index in selected_features.iter() {
 feature_headers.push(headers[feature_index].clone());
 features = ndarray::stack![Axis(1), features,
 games.column(feature_index as usize)
 .mapv(|elem| elem.parse::<f32>().unwrap())
 .insert_axis(Axis(1))
];
};

We'll take a peek to make sure there were no obvious issues with parsing.

darn::show_frame(&features, Some(&feature_headers));

Age Height

24.0 180.0

23.0 170.0

21.0 185.0

21.0 185.0

25.0 185.0

... ...

29.0 179.0

27.0 176.0

27.0 176.0

30.0 185.0

34.0 185.0

Looking good. Next, we'll need to determine the different games available in our dataset -

we'll be using these to group the age and height data.

Box Plots at the Olympics

Page 29

let idx_sport = headers.iter().position(|x| x == "Sport").unwrap();
let unique_games =
games.column(idx_sport).iter().cloned().unique().collect_vec();

println!("{}",unique_games.iter().format(", "));

Basketball, Judo, Speed Skating, Cross Country Skiing, Athletics, Ice Hockey,
Badminton, Sailing, Biathlon, Gymnastics, Alpine Skiing, Handball,
Weightlifting, Wrestling, Luge, Rowing, Bobsleigh, Swimming, Football,
Equestrianism, Shooting, Taekwondo, Boxing, Fencing, Diving, Canoeing, Water
Polo, Tennis, Cycling, Hockey, Figure Skating, Softball, Archery, Volleyball,
Synchronized Swimming, Modern Pentathlon, Table Tennis, Nordic Combined,
Baseball, Rhythmic Gymnastics, Freestyle Skiing, Rugby Sevens, Trampolining,
Beach Volleyball, Triathlon, Ski Jumping, Curling, Golf, Snowboarding, Short
Track Speed Skating, Skeleton, Rugby, Art Competitions, Tug-Of-War

We now have the unique list of Olympic games - some of which you may not even have

heard of!

Visualising the Data

Now that we have prepared our data, let's use all of our hard work in a box plot test.

Height of Athletes in Basketball

Let's see if we can create a box plot for the height of athletes in Basketball. To do so,

we're going to build a list of row indices that correspond to Basketball data.

let mut count = -1;
let mut indices = Vec::<usize>::new();

let mask = games.column(idx_sport).map(|elem| {
 count += 1;
 if(elem == "Basketball") { indices.push(count as usize) };
 elem == "Basketball"
 }
);

Then, we'll use these indices to select from our feature data.

let basketball = features.select(Axis(0), &indices);

We'll take a peek to make sure there were no obvious issues with parsing.

darn::show_frame(&basketball, Some(&feature_headers));

Age Height

24.0 180.0

Box Plots at the Olympics

Page 30

19.0 185.0

29.0 195.0

25.0 189.0

23.0 178.0

... ...

30.0 218.0

20.0 201.0

28.0 201.0

23.0 202.0

33.0 171.0

Finally, we'll create a box plot with just the height of the athletes in our dataset.

let mut plot = Plot::new();

let trace = BoxPlot::new(basketball.column(1).to_vec()).name("Basketball");

plot.add_trace(trace);

darn::show_plot(plot);

Looking good.

Athlete Height Grouped by Olympic Games

Basketball

160

170

180

190

200

210

220

Box Plots at the Olympics

Page 31

Now let's do the same as what we've just done for Basketball, but apply it to all the

games in our dataset.

let mut plot = Plot::new();
let layout = Layout::new()
 .title(Title::new("Athlete height grouped by Olympic games."))
 .margin(Margin::new().left(30).right(0).bottom(140).top(40))
 .xaxis(Axis::new().show_grid(true).tick_font(Font::new().size(10)))
 .show_legend(false);

plot.set_layout(layout);

for name in unique_games.iter() {
 let mut count = -1;
 let mut indices = Vec::<usize>::new();
 let mask = games.column(idx_sport).map(|elem| {
 count += 1;
 if(elem == name) { indices.push(count as usize) };
 elem == "name"
 }
);

 let game = features.select(Axis(0), &indices);
 let trace1 = BoxPlot::new(game.column(1).to_vec()).name(name);
 plot.add_trace(trace1);
};

darn::show_plot(plot);

Athlete Age Grouped by Olympic Games

B
asketball

Judo
S
peed S

kating
C
ross C

ountry S
kiing

A
thletics

Ice H
ockey

B
adm

inton
S
ailing

B
iathlon

G
ym

nastics
A
lpine S

kiing
H

andball
W

eightlifting
W

restling
Luge
R
ow

ing
B
obsleigh

S
w

im
m

ing
Football
Equestrianism
S
hooting

Taekw
ondo

B
oxing

Fencing
D

iving
C
anoeing

W
ater Polo

Tennis
C
ycling

H
ockey

Figure S
kating

S
oftball

A
rchery

V
olleyball

S
ynchronized S

w
im

m
ing

M
odern Pentathlon

Table Tennis
N

ordic C
om

bined
B
aseball

R
hythm

ic G
ym

nastics
Freestyle S

kiing
R
ugby S

evens
Tram

polining
B
each V

olleyball
Triathlon
S
ki Jum

ping
C
urling

G
olf

S
now

boarding
S
hort Track S

peed S
kating

S
keleton

R
ugby

A
rt C

om
petitions

Tug-O
f-W

ar

140

160

180

200

220

Athlete height grouped by Olympic games.

Box Plots at the Olympics

Page 32

Let's repeat the last visualisation but this time for the age of athletes grouped by Olympic

games.

let mut plot = Plot::new();
let layout = Layout::new()
 .title(Title::new("Athlete age grouped by Olympic games."))
 .margin(Margin::new().left(30).right(0).bottom(140).top(40))
 .xaxis(Axis::new().show_grid(true).tick_font(Font::new().size(10)))
 .show_legend(false);

plot.set_layout(layout);

for name in unique_games.iter() {
 let mut count = -1;
 let mut indices = Vec::<usize>::new();
 let mask = games.column(idx_sport).map(|elem| {
 count += 1;
 if(elem == name) { indices.push(count as usize) };
 elem == "name"
 }
);

 let game = features.select(Axis(0), &indices);
 let trace1 = BoxPlot::new(game.column(0).to_vec()).name(name);
 plot.add_trace(trace1);
};

darn::show_plot(plot);

Conclusion

B
asketball

Judo
S
peed S

kating
C
ross C

ountry S
kiing

A
thletics

Ice H
ockey

B
adm

inton
S
ailing

B
iathlon

G
ym

nastics
A
lpine S

kiing
H

andball
W

eightlifting
W

restling
Luge
R
ow

ing
B
obsleigh

S
w

im
m

ing
Football
Equestrianism
S
hooting

Taekw
ondo

B
oxing

Fencing
D

iving
C
anoeing

W
ater Polo

Tennis
C
ycling

H
ockey

Figure S
kating

S
oftball

A
rchery

V
olleyball

S
ynchronized S

w
im

m
ing

M
odern Pentathlon

Table Tennis
N

ordic C
om

bined
B
aseball

R
hythm

ic G
ym

nastics
Freestyle S

kiing
R
ugby S

evens
Tram

polining
B
each V

olleyball
Triathlon
S
ki Jum

ping
C
urling

G
olf

S
now

boarding
S
hort Track S

peed S
kating

S
keleton

R
ugby

A
rt C

om
petitions

Tug-O
f-W

ar

10

20

30

40

50

60

70

Athlete age grouped by Olympic games.

Box Plots at the Olympics

Page 33

In this section, we worked towards illustrating the age and height of athletes grouped by

games in the 120 years of Olympic history: athletes and results dataset. We avoided

hard-coding where possible and presented the data in the form of multiple box plots.

