
DR. SHAHIN ROSTAMI

PRACTICAL
EVOLUTIONARY
ALGORITHMS

Biography
Dr. Shahin Rostami is a Senior Academic (Associate Professor) and Principal Consultant

in Data Science, Arti�cial Intelligence, Digital Health, and Defence Systems. He is currently

working with industry whilst on his sabbatical from his position at the Department of

Computing and Informatics at the Bournemouth University, where he has been a faculty

member since 2014.

Dr. Rostami holds a Ph.D. in the �eld of Computational Intelligence with applications to

Concealed Weapon Detection. His research interests lie within Data Science and Arti�cial

Intelligence, ranging from theory to their application to Digital Healthcare and Threat

Detection. Currently, he is consulting for and supervising PhD research projects in Non-

Contact Vital Sign Measurement and Multi-Objective Concealed Weapon Detection. He

has published in many high-impact journals and conferences, and organised/chaired

special sessions including the IEEE CIBCB 2017 "Machine Learning in Medical Diagnosis

and Prognosis". He also leads the Computational Intelligence Research Initiative (CIRI),

and currently supervises 5 Ph.D. and 3 Ms.c. students in related subjects.

Dr. Rostami has founded and held the position of Programme Leader for multiple

programmes at the postgraduate level: MS.c. Data Science and Arti�cial Intelligence

(DSAI); MS.c. Digital Health and Arti�cial Intelligence (DHAI); and MS.c. Applied Data

Analytics (ADA). He has designed and taught both postgraduate and undergraduate

curriculum, such as Search and Optimisation, Arti�cial Intelligence, and Data Mining and

Analytic Technologies. He is also committed to teaching Data Science and Computer

Science to anyone, regardless of their educational background, e.g. his public videos on

YouTube.

shahinrostami.com

YT: ShahinRostami

@ShahinRostami

Github: shahinrostami

u/shahinrostami

Patreon: StamiLabs.com

IG: Data.Crayon

Contents © 2020 Dr. Shahin Rostami

https://datacrayon.com/about/biography/
https://staffprofiles.bournemouth.ac.uk/display/srostami
https://polyra.com/
https://research.bournemouth.ac.uk/project/ciri/
https://datacrayon.com/about/biography/supervisions
https://www.bournemouth.ac.uk/study/courses/msc-data-science-artificial-intelligence
https://www.bournemouth.ac.uk/study/courses/msc-digital-health-artificial-intelligence
https://www1.bournemouth.ac.uk/study/courses/msc-applied-data-analytics
https://www.youtube.com/watch?v=L--IxUH4fac
https://shahinrostami.com/
https://www.youtube.com/shahinrostami
https://twitter.com/shahinrostami
https://github.com/shahinrostami/
https://reddit.com/u/shahinrostami
https://stamilabs.com/
https://www.instagram.com/p/CBYeu6mHF0s/
https://datacrayon.com/about/biography/

. .1

. .3

Table of Contents
Preface

Synthetic Objective Functions and ZDT1

Preface

Page 1

Preface

Preface

Evolutionary Algorithms (EAs) are a fascinating class of algorithms for meta-heuristic

optimisation. There exist many books on the topic of EAs, ranging from their theory to

practice. The �rst book I read on the topic was Genetic algorithms in search, optimization,

and machine learning by David E. Goldberg (1989), and to this day I still recommend it to

new students in the �eld.

However, there is a re-occurring dif�culty when my students are starting out in the �eld,

"how do I move from theory to practice?". Most books will have some chapters dedicated

to applications of EAs, but what's missing is an up-to-date book dedicated to using

modern technology and concepts.

When writing this book, I had to answer some dif�cult questions:

What programming language will my examples be written in?

What software libraries will I use?

How do I structure the chapters and sections, do I lead entirely by example or do I

dedicate some parts to the theory?

Do I focus on single-objective EAs or multi-objective EAs?

Nevertheless, the decisions had to be made. I selected Python as the programming

language simply due to its rise in popularity (in 2019), and this was only a dif�cult choice

because there is a wealth of resources written for MATLAB. Of the resources written in

MATLAB, it is a shame to not be able to use PlatEMO, which is a well-maintained open-

source platform for Evolutionary Multi-objective Optimisation. In its place, when a

software library is needed, I will turn to Platypus, which provides optimisation algorithms

and analysis tools for multi-objective optimisation.

For the structure of the chapters and sections, I have decided to lead entirely by example.

There will be code to demonstrate every concept used, and I will show how we can

implement algorithms from their mathematical representation. In these cases, I will focus

on the readability of the implementations rather than their performance.

Finally, I will focus on multi-objective EAs as this represents the majority of real-world

problems. However, single-objective EAs will make an appearance to highlight the

differences between the two.

Perhaps the most dif�cult question to answer is where do we start? There is so much to

cover, and many potential starting points. For this book, I will start with a de�nition of

objective functions, and illustrate the relationship between what we call the problem

https://datacrayon.com/posts/search-and-optimisation/practical-evolutionary-algorithms/preface/

Preface

Page 2

space and the objective space. With this approach, I hope there will be a clear

understanding of what the various operators within an EA are affecting.

Note

I aim to generate everything in this book through code. This means you will

see the code for all my �gures and tables, including things like �owcharts.

Every section is intended to be independent, so you will �nd some repetition

as you progress from one section to another.

Synthetic Objective Functions and ZDT1

Page 3

Synthetic Objective Functions and ZDT1

Preamble

used to create block diagrams
%reload_ext xdiag_magic
%xdiag_output_format svg

import numpy as np # for multi-dimensional containers
import pandas as pd # for DataFrames
import plotly.graph_objects as go # for data visualisation

Introduction

In mathematics, optimisation is concerned with the selection of optimal solutions to

objective functions. An objective function consists of input arguments referred to as

problem variables (or genotype) which are computed by one or many mathematical

functions to determine the objective value (or phenotype).

Real-world optimisation problems are divided into one (in the case of single-objective

optimisation) or many (in the case of multi-objective optimisation) objective functions in

order to be optimised by an optimisation algorithm. The dif�culty of convergence can be

reduced by the bounding of problem variables as this reduces the size of the search

domain.

In order to determine an Evolutionary Algorithm's robustness when solving problems

consisting of multiple objectives, its performance must be assessed on the optimisation of

synthetic test functions which are created for the purpose of testing. These problems may

also be used to systematically compare two or more Evolutionary Algorithms.

Download SourceContents

Preamble

Introduction

The ZDT1 test function

Performance in Objective Space

Conclusion

https://datacrayon.com/posts/search-and-optimisation/practical-evolutionary-algorithms/synthetic-objective-functions-and-zdt1/
https://datacrayon.com/posts/search-and-optimisation/practical-evolutionary-algorithms/synthetic-objective-functions-and-zdt1/index.ipynb

Synthetic Objective Functions and ZDT1

Page 4

%%blockdiag
{
 orientation = portrait
 "Problem Variables" -> "Test Function" -> "Objective Values"
 "Test Function" [color = '#ffffcc']
}

Problem Variables

Test Function

Objective Values

Synthetic test functions are typically:

Intentionally dif�cult, meaning they are designed to include optimisation dif�culties

which are present in real-world problems.

Scalable, meaning they can be con�gured with a different number of problem

variables and objectives.

Computationally ef�cient, meaning they are faster to execute than a real-world

problem. This is desirable when benchmarking an Evolutionary Algorithm.

In contrast, real-world problems which have been encapsulated within an objective

function in order to be used by an optimiser are often computationally expensive and have

long execution times. This is because synthetic test functions are often mathematical

equations which aim to cause dif�culty for an optimiser when searching for problem

variables that produce optimal objective values, whereas real-world problems often

involve computationally expensive simulations in order to arrive at the objective values.

Put simply, using a real-world problem to evaluate the performance of a newly proposed

Evolutionary Algorithm only allows us to determine if an algorithm is good at solving that

single problem. What we're interested in is analysing how Evolutionary Algorithms

perform when encountering various dif�culties that appear in multi-objective problems,

and how they compare to each other.

The ZDT1 test function

We will be using a synthetic test problem throughout this notebook called ZDT1. It is part

of the ZDT test suite, consisting of six different two-objective synthetic test problems. This

Synthetic Objective Functions and ZDT1

Page 5

is quite an old test suite, easy to solve, and very easy to visualise.

Mathematically, the ZDT1 two-objective test function can be expressed as:

where is a solution to the problem, de�ned as a vector of decision variables.

and all decision variables fall between and .

For this bi-objective test function, is the �rst objective, and is the second objective.

This particular objective function is, by design, scalable up to any number of problem

variables but is restricted to two problem objectives.

Let's start implementing this in Python, beginning with the initialisation of a solution

according to Equations 2 and 3. In this case, we will have 30 problem variables .

D = 30
x = np.random.rand(D)
print(x)

[0.9204285 0.94911763 0.58171075 0.86276293 0.74091143 0.76786472
 0.32042083 0.99105863 0.82828293 0.41936616 0.43302201 0.3502152
 0.52507767 0.02871106 0.21002611 0.14115373 0.54289036 0.0767823
 0.67900898 0.54012128 0.70848884 0.92282082 0.56027323 0.93871461
 0.06385584 0.597213 0.53146707 0.27110393 0.95440343 0.01783687]

Now that we have a solution to evaluate, let's implement the ZDT1 synthetic test function

using Equation 1.

def ZDT1(x):
 f1 = x[0] # objective 1
 g = 1 + 9 * np.sum(x[1:D] / (D-1))
 h = 1 - np.sqrt(f1 / g)
 f2 = g * h # objective 2

 return [f1, f2]

1

f (x)1 1

f (x)2

g(x ,… ,x)2 D

h(f , g)1

= x1

= g ⋅ h

= 1 + 9 ⋅
d=2

∑
D

(D − 1)
xd

= 1 − f1/g

(1)

x D

x = ⟨x ,x ,… ,x ⟩1 2 D (2)

0 1

0 ≤ x ≤d 1, d = 1,… ,D (3)

f1 f2

D = 30

Synthetic Objective Functions and ZDT1

Page 6

Finally, let's invoke our implemented test function using our solution from earlier.

objective_values = ZDT1(x)
print(objective_values)

[0.9204284983552486, 3.5113646524980835]

Now we can see the two objective values that measure our solution according to the

ZDT1 synthetic test function, which is a minimisation problem.

Performance in Objective Space

We will be discussing desirable characteristics in multi-objective solutions, but for now,

let's plot some randomly initialised solutions against an optimal set of solutions for ZDT1.

This is a synthetic test function, and as such the authors have provided us with a way to

calculate the optimal set.

Let's use this to generate 20 ideal sets of objective values.

true_front = np.empty((0, 2))

for f1 in np.linspace(0, 1, num=20):
 f2 = 1 - np.sqrt(f1)
 true_front = np.vstack([true_front, [f1, f2]])

true_front = pd.DataFrame(true_front, columns=['f1', 'f2']) # convert to
DataFrame
true_front

f1 f2

0 0.000000 1.000000

1 0.052632 0.770584

2 0.105263 0.675557

3 0.157895 0.602640

4 0.210526 0.541169

5 0.263158 0.487011

6 0.315789 0.438049

7 0.368421 0.393023

8 0.421053 0.351114

9 0.473684 0.311753

10 0.526316 0.274524

11 0.578947 0.239114

x

x

f =2 1 − f1 (4)

Synthetic Objective Functions and ZDT1

Page 7

12 0.631579 0.205281

13 0.684211 0.172830

14 0.736842 0.141605

15 0.789474 0.111477

16 0.842105 0.082337

17 0.894737 0.054095

18 0.947368 0.026671

19 1.000000 0.000000

Now we can plot them to have an idea of the shape of the true front for ZDT1 in objective

space.

fig = go.Figure(layout=dict(xaxis=dict(title='f1'),yaxis=dict(title='f2')))

fig.add_scatter(x=true_front.f1, y=true_front.f2, mode='markers')

fig.show()

To wrap things up, let's generate 50 objective values using the ZDT1 objective function

created above. We achieve this by passing in 50 randomly initialised sets of problem

variables.

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

f1

f2

Synthetic Objective Functions and ZDT1

Page 8

objective_values = np.empty((0, 2))

for i in range(50):
 x = np.random.rand(D)
 y = ZDT1(x)
 objective_values = np.vstack([objective_values, y])

convert to DataFrame
objective_values = pd.DataFrame(objective_values, columns=['f1', 'f2'])
objective_values.head()

f1 f2

0 0.969711 2.900818

1 0.731999 2.945158

2 0.144458 3.793344

3 0.337195 4.329990

4 0.767939 3.841221

Now we will plot the objective values of our randomly initialised solutions on top of a plot

of the true front, this will give us some idea of the difference in performance between the

two sets.

fig = go.Figure(layout=dict(xaxis=dict(title='f1'), yaxis=dict(title='f2')))

fig.add_scatter(x=objective_values.f1, y=objective_values.f2,
 name='Solutions', mode='markers')

fig.add_scatter(x=true_front.f1, y=true_front.f2, name='True Front')

fig.show()

Synthetic Objective Functions and ZDT1

Page 9

Conclusion

In this section, we introduced the concept of synthetic test functions along with ZDT1, a

popular and relatively easy example. We expressed the concept mathematically and then

made a direct implementation using Python. We then generated a set of 50 solutions,

calculated the objective values for each one, and plotted the objective space using a

scatter plot.

There are many suites of synthetic test functions in the literature, some to read about are

ZDT, DTLZ, CEC09, and WFG Toolkit.

1. E. Zitzler, K. Deb, and L. Thiele. Comparison of Multiobjective Evolutionary Algorithms:

Empirical Results. Evolutionary Computation, 8(2):173-195, 2000 ↩

0 0.2 0.4 0.6 0.8 1

0

1

2

3

4

5

6

Solutions True Front

f1

f2

Exercise

Using the ZDT test suite paper listed in the references, duplicate this

notebook but with the focus on ZDT2 instead of ZDT1.

