Get the Books
Enjoying these notebooks and want to support the work? Check out the practical books on Data Science, Visualisation, and Evolutionary Algorithms.
Get the books
Topographical Plots
Preamble¶
In [53]:
import mne
Dataset¶
Download sample data from Mike Cohen.
In [76]:
import warnings
warnings.filterwarnings("ignore")
def load_data(tmin, tmax):
epochs = mne.io.read_epochs_eeglab('sampleEEGdata.mat').crop(tmin, tmax)
return epochs
All Trials¶
In [77]:
raw = load_data(-1, 1)
values = (raw.get_data().mean(axis=0).squeeze())
evoked = mne.EvokedArray(values, raw.info, tmin=-1)
Plot Topographical Map at 0ms¶
In [78]:
evoked.plot_topomap(times=[0], time_unit='ms',cmap='Spectral_r');
Plot Topographical Map at 0ms, 500ms, and 1000ms¶
In [79]:
evoked.plot_topomap(times=[0, .5, 1], time_unit='ms',cmap='Spectral_r');
Plot First 5 Topographical Maps¶
In [87]:
evoked.plot_topomap(times=evoked.times[0:6], time_unit='ms',cmap='Spectral_r');
Plot Sensor Position¶
In [88]:
evoked.plot_sensors();
evoked.plot_sensors(kind='3d', ch_groups='position');
Single Trial¶
In [89]:
raw = load_data(-1, 1)
values = (raw[0].get_data().squeeze())
evoked = mne.EvokedArray(values, raw.info, tmin=-1)
Plot Topographical Map at 0ms¶
In [95]:
evoked.plot_topomap(times=[0], time_unit='ms',cmap='Spectral_r');
Plot Topographical Map at 0ms, 500ms, and 1000ms¶
In [96]:
evoked.plot_topomap(times=[0, .5, 1], time_unit='ms',cmap='Spectral_r');
Plot First 5 Topographical Maps¶
In [97]:
evoked.plot_topomap(times=evoked.times[0:6], time_unit='ms',cmap='Spectral_r');
Support this work
You can support this work by getting the e-books. This notebook will always be available for free in its online format.
Get the Books
Enjoying these notebooks and want to support the work? Check out the practical books on Data Science, Visualisation, and Evolutionary Algorithms.
Get the books