Get the Books
Enjoying these notebooks and want to support the work? Check out the practical books on Data Science, Visualisation, and Evolutionary Algorithms.
Get the books
DataFrame to Samples Dict
Preamble¶
import pandas as pd
from plotapi import LineFight
LineFight.set_license("your username", "your license key")
Introduction¶
Plotapi BarFight
, PieFight
, and LineFight
, expect a list
of dict
items that define the value of nodes over time. The following is an example of this data structure.
samples = [
{"order": 2000.01, "name": "Sankey", "value": 10},
{"order": 2000.01, "name": "Terminus", "value": 10},
{"order": 2000.01, "name": "Chord", "value": 40},
{"order": 2000.01, "name": "Bar Fight", "value": 90},
{"order": 2000.01, "name": "Pie Fight", "value": 70},
{"order": 2000.02, "name": "Sankey", "value": 30},
{"order": 2000.02, "name": "Terminus", "value": 20},
{"order": 2000.02, "name": "Chord", "value": 40},
{"order": 2000.02, "name": "Bar Fight", "value": 120},
{"order": 2000.02, "name": "Pie Fight", "value": 55},
{"order": 2000.03, "name": "Sankey", "value": 35},
{"order": 2000.03, "name": "Terminus", "value": 45},
{"order": 2000.03, "name": "Chord", "value": 60},
{"order": 2000.03, "name": "Bar Fight", "value": 85},
{"order": 2000.03, "name": "Pie Fight", "value": 100},
{"order": 2000.04, "name": "Sankey", "value": 25},
{"order": 2000.04, "name": "Terminus", "value": 60},
{"order": 2000.04, "name": "Chord", "value": 90},
{"order": 2000.04, "name": "Bar Fight", "value": 50},
{"order": 2000.04, "name": "Pie Fight", "value": 105},
{"order": 2000.05, "name": "Sankey", "value": 60},
{"order": 2000.05, "name": "Terminus", "value": 80},
{"order": 2000.05, "name": "Chord", "value": 120},
{"order": 2000.05, "name": "Bar Fight", "value": 30},
{"order": 2000.05, "name": "Pie Fight", "value": 95},
]
Dataset¶
Let's work backwards to the DataFrame
, our starting point for this data wrangling exercise.
df = (
pd.DataFrame(samples)
.pivot(index="order", columns="name")["value"]
.reset_index()
.rename_axis(None, axis=1)
)
df
Great! Now let's work back to the samples dict
.
Wrangling¶
Our journey back to the samples list
of dict
items will be through pandas.melt
.
df_melted = pd.melt(
df,
id_vars="order",
value_vars=list(df.columns[1:]),
var_name="name",
value_name="value",
)
df_melted.head(10)
We're nearly there. This next step is optional - we're going to sort by order
.
df_melted = df_melted.sort_values("order")
df_melted.head(10)
Now for the final step - let's get our list
of dict
items.
samples = df_melted.to_dict(orient="records")
samples
Perfect! We're all done.
Visualisation¶
No Plotapi exercise is complete without a visualisation.
As we can see, we have set our license details in the preamble with LineFight.set_license()
.
Here we're using .show()
which outputs to a Jupyter Notebook cell, however, we may want to output to an HTML file with .to_html()
instead.
LineFight(samples, format_current_order="0.2f").show()
Here we can see the default behaviour of Plotapi LineFight
.
You can do so much more than what's presented in this example, and we'll cover this in later sections. If you want to see the full list of growing features, check out the Plotapi Documentation.
Support this work
You can support this work by getting the e-books. This notebook will always be available for free in its online format.
Plotapi, beautiful by default.
Let plotapi do the heavy lifting – enabling beautiful interactive visualisations with a single line of code (instead of hundreds).
Get Plotapi