{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Preamble" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "from plotapi import Chord\n", "\n", "Chord.set_license(\"your username\", \"your license key\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Introduction\n", "\n", "Plotapi Chord labels wrap by default - this can be disabled if required.\n", "\n", "As we can see, we have set our license details in the preamble with `Chord.set_license()`" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Dataset" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Chord expects a list of names (`list[str]`) and a co-occurence matrix (`list[list[float]]`) as input." ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "matrix = [\n", " [0, 5, 6, 4, 7, 4],\n", " [5, 0, 5, 4, 6, 5],\n", " [6, 5, 0, 4, 5, 5],\n", " [4, 4, 4, 0, 5, 5],\n", " [7, 6, 5, 5, 0, 4],\n", " [4, 5, 5, 5, 4, 0],\n", "]\n", "\n", "names = [\"Exciting Action\", \"Fun Adventure\", \"Hilarious Comedy\", \"Drama\", \"Fantasy\", \"Chilling Thriller\"]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "It may look more clear if we present this as a table with the columns and indices labelled. This is entirely optional." ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Exciting ActionFun AdventureHilarious ComedyDramaFantasyChilling Thriller
Exciting Action056474
Fun Adventure505465
Hilarious Comedy650455
Drama444055
Fantasy765504
Chilling Thriller455540
\n", "
" ], "text/plain": [ " Exciting Action Fun Adventure Hilarious Comedy Drama \\\n", "Exciting Action 0 5 6 4 \n", "Fun Adventure 5 0 5 4 \n", "Hilarious Comedy 6 5 0 4 \n", "Drama 4 4 4 0 \n", "Fantasy 7 6 5 5 \n", "Chilling Thriller 4 5 5 5 \n", "\n", " Fantasy Chilling Thriller \n", "Exciting Action 7 4 \n", "Fun Adventure 6 5 \n", "Hilarious Comedy 5 5 \n", "Drama 5 5 \n", "Fantasy 0 4 \n", "Chilling Thriller 4 0 " ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import pandas as pd\n", "pd.DataFrame(matrix, columns=names, index=names)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Visualisation" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Label wrapping is controlled with by the `wrap_labels` parameter which is `True` by default.\n", "\n", "Here we're using `.show()` which outputs to a Jupyter Notebook cell, however, we may want to output to a HTML file with `.to_html()` instead. More on the different output methods later!\n", "\n", "Be sure to interact with the visualisation to see what the default settings can do!\n", "
" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "\n", "\n", "\n", "\n", "\n", "Plotapi - Chord Diagram\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
\n", " \n", " \n", " \n", "\n", "" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "Chord(matrix, names, colors=\"viridis\").show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's demonstrate label wrapping set to disabled." ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "\n", "\n", "\n", "\n", "\n", "Plotapi - Chord Diagram\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
\n", " \n", " \n", " \n", "\n", "" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "Chord(matrix, names, colors=\"viridis\", wrap_labels=False).show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "You can do so much more than what's presented in this example, and we'll cover this in later sections. If you want to see the full list of growing features, check out the Plotapi Documentation. and the Plotapi Gallery." ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.1" } }, "nbformat": 4, "nbformat_minor": 4 }