Plotapi, beautiful by default.

Let plotapi do the heavy lifting – enabling beautiful interactive visualisations with a single line of code (instead of hundreds).

Get Plotapi

Changing the Colours

Made with Plotapi

You can create beautiful, interactive, and engaging visualisations like this one with Plotapi in any programming language.

Preamble

In [1]:
from plotapi import Chord

Chord.set_license("your username", "your license key")

Introduction

We can change our Chord diagram's colour scheme to one of many beautiful presets, or even supply our own list of colours as HEX colour codes.

As we can see, we have set our license details in the preamble with Chord.set_license()

Dataset

Chord expects a list of names (list[str]) and a co-occurence matrix (list[list[float]]) as input.

In [2]:
matrix = [
    [0, 5, 6, 4, 7, 4],
    [5, 0, 5, 4, 6, 5],
    [6, 5, 0, 4, 5, 5],
    [4, 4, 4, 0, 5, 5],
    [7, 6, 5, 5, 0, 4],
    [4, 5, 5, 5, 4, 0],
]

names = ["Action", "Adventure", "Comedy", "Drama", "Fantasy", "Thriller"]

It may look more clear if we present this as a table with the columns and indices labelled. This is entirely optional.

In [3]:
import pandas as pd
pd.DataFrame(matrix, columns=names, index=names)
Out[3]:
Action Adventure Comedy Drama Fantasy Thriller
Action 0 5 6 4 7 4
Adventure 5 0 5 4 6 5
Comedy 6 5 0 4 5 5
Drama 4 4 4 0 5 5
Fantasy 7 6 5 5 0 4
Thriller 4 5 5 5 4 0

Visualisation

To specify colours, we can set the colors parameter to one of the following:

  • A list of colour strings, e.g. ["#264653","#2a9d8f","#e9c46a","#f4a261","#e76f51"]. If there are fewer colours than there are categories, Chord will loop round the colours.
  • The string name of a predefined set of colours from the following list: ['monsters', 'category10', 'accent', 'dark2', 'paired', 'pastel1', 'pastel2', 'set1', 'set2', 'set3', 'tableau10', 'rainbow', 'sinebow', 'yellow_red', 'yellow_brown', 'yellow_green', 'yellow_blue', 'red_purple', 'purple_red', 'purple_blue', 'orange_red', 'green_blue', 'blue_purple', 'blue_green', 'cubehelix', 'cool', 'warm', 'cividis', 'plasma', 'magma', 'inferno', 'viridis', 'turbo', 'brown_green', 'purple_green', 'pink_green', 'red_blue', 'red_grey', 'red_yellow_blue', 'red_yellow_green', 'spectral', 'blues', 'greens', 'greys', 'oranges', 'purples', 'reds'].

Here we're using .show() and show_png() which outputs to a Jupyter Notebook cell, however, we may want to output to a file with .to_html() or .to_png() instead. More on the different output methods later!

The default colour scheme is "rainbow". Let's try a few different colour schemes.

Be sure to interact with the visualisation to see what the default settings can do!

In [21]:
Chord(matrix, names, colors="plasma").show()
Plotapi - Chord Diagram
In [22]:
Chord(matrix, names, colors="monsters").show_png()
In [23]:
Chord(matrix, names, colors=["#333", "cyan", "magenta"]).show_png()

You can do so much more than what's presented in this example, and we'll cover this in later sections. If you want to see the full list of growing features, check out the Plotapi Documentation. and the Plotapi Gallery.

Made with Plotapi

You can create beautiful, interactive, and engaging visualisations like this one with Plotapi in any programming language.

Plotapi, beautiful by default.

Let plotapi do the heavy lifting – enabling beautiful interactive visualisations with a single line of code (instead of hundreds).

Get Plotapi